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[Last time...

T

— _
maximize [E,, zth(st, a,)
t=0 il

subject to s; = f(s¢, ag, wy)
a; = 1(St)

Reinforcement Learning

< —>
Model-free

Approximate DP

Direct Policy Search
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[Last time...

—» Where does this come from?

maximize E,, Y R (s, ap)
T

subject to s; = f(s¢, ap, wy)
A = T[(S t) \ This is the world model.

This is our optimization variable.
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Sometimes it is given...

Goal: Achieve a high score in the Atari game “Breakout”

States: Image of the current screen (?)

Actions: Left and right actions . .

Reward: Change in the score of the game
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Sometimes we (try to) design it...

What is a good reward function for
an autonomous car?

Proposal:

* Negative reward for crashing

* Positive reward for high speed

* Negative reward for too high speed
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Sometimes we (try to) design it...

What is a good reward function for a
robot vacuum?

Proposal:

* Positive for vacuuming dirt

e

preceding section. We might propose to measure performance by the amount of dirt cleaned
up in a single eight-hour shift. With a rational agent, of course, what you ask for 1s what
you get. A rational agent can maximize this performance measure by cleaning up the dirt,
then dumping it all on the floor, then cleaning it up again, and so on.

Artificial Intelligence: A Modern Approach

Russell and Norvig CSCI 699: Robot Learning - Lecture 5 7



Sometimes we (try to) design it...

What is a good reward function for FetchPush?

Proposal:
* Negative for error distance

@ ghost commented on Mar 1, 2018 - edited by ghost ~

When | am training HER on FetchPush-v0 the agent sometimes learns to push the big block to achieve it's goal. If you could make
it unmovable then the agent would at least not learn such behaviours to achieve the task.

C;' matthiasplappert commented on Mar 22, 2018 Contributor

Especially in the FetchSlide task, Fetch sometimes learns to move the table in order to achieve the desired puck position. While
entertaining, this is clearly not what Fetch is supposed to do.

OpenAI Gym

Brockman et al. CSCI 699: Robot Learning - Lecture 5 8



Sometimes we (try to) design it...

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

.
Actions: Control inputs 8

Reward: Positive for the maneuvers, negative for crashing
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Autonomous helicopter aerobatics through apprenticeship learning  CSCI 699: Robot Learning - Lecture 5
Abbeel et al., IJRR 2010
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Not that easy!

Goal: Make an RC helicopter fly and perform some maneuvers

States: Sensory input of the helicopter

-
Actions: Control inputs 8

[Reward: Positive for the maneuvers, negative for crashing ]

This is a very naive reward function. They instead learned the reward from expert demonstrations.
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Today...

* Imitation learning

* Inverse reinforcement learning (IRL)
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ople sometimes use them interchangeably.

Imitation le arning VS . IRL PeWe will use the most common definitions.

Given some expert data (s, ag, S1, a1, - ), ---

Imitation learning Inverse reinforcement learning
directly learns a policy that learns a reward function which,
imitates the expert. when optimized, performs the task.

simple, not ambiguous, fast interpretable, generalizable
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Behavioral cloning

Train a neural network to map states o
. . Road Intensit irection
11’1t() expert aCthI’IS. Feedback Uni); Output Units

-

-

Neural
Network

— c’ii —_— L(ai, &l)

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

ALVINN: An Autonomous Land Vehicle in a Neural Network

Pomerleau, NeurIPS 1988 CSCI 699: Robot Learning - Lecture 5 14



Behavioral cloning

Expert Trajectories Dataset

Learned

Policy

Supervised Learning

From: Cornell CS4789 CSCI 699: Robot Learning - Lecture 5 15



Compounding errors

Small errors in the actions taken
will slightly deviate the
trajectory from the expert.

These new states will lead to
larger errors.

From: Cornell CS4789 CSCI 699: Robot Learning - Lecture 5 16



Direct policy learning

Collect expert
feedback/demonstrations

Trajectories Training data

Rollout in Learned policy / Supervised
environment \ learning
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- ____________________________________________________________________
Direct policy learning

More on this next week!

¢ Ross et al.,, A Reduction of Imitation Learning and Structured Prediction to No-
Regret Online Learning (2011).

Ho and Ermon, Generative Adversarial Imitation Learning (2016).
e Florence et al., Implicit Behavioral Cloning (2021).

Shafiullah et al., Behavior Transformers: Cloning k modes with one stone (2022).

Jain et al., Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-
Attention Transformers (2024).

e Fu et al., In-Context Imitation Learning via Next-Token Prediction (2024).
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Today...

* Inverse reinforcement learning (IRL)
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Inverse reinforcement learning (IRL)

# Kalman, 1964: Inverse optimal control for 1D problems
Boyd et al., 1994: Linear matrix inequality (LMI) for LQ setting

Ng, Russell, 2000: First MDP formulation and reward ambiguity

Abbeel, Ng, 2004: Apprenticeship learning (feature matching)
Ratlitf et al., 2006: Max margin planning (MMP)
Ziebart et al., 2008: Max-Ent IRL

From: Stanford CS237B CSCI 699: Robot Learning - Lecture 5 20



Today...

* Inverse reinforcement learning (IRL)
« Apprenticeship learning
* Maximum margin planning
* Max-Ent IRL
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General IRL formulation

We assume a feature function ¢ such that R(s,a) = w'¢(s, a).
We only need to learn w.

/) = B| Y YRG0 150 = 9

Lt=0

= w'E z yEb(se,m(se)) | So = s

20
=w'¢(m,s)
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General IRL formulation

We know, for any policy w and s € §,
V™ (s) = V(s)

which we now write as
w'lg(r*, s) = w'¢(m,s)

This is the only condition w must satisty.

We just solved IRL: it turns out w = 0, yay! i
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Reward ambiguity
wle(m*, s) =wlo(r,s)

More generally, if a w™ satisties this condition, cw™ will also
satisty for any ¢ = 0.

Note: Reward ambiguity is not just this. Many w vectors satisty
the condition even if we constrain ||w||, to a constant.
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Ap p renti Ce Ship le arnin g This is how the helicopter flew!

An attempt to alleviate reward ambiguity. First, assume ||w]|, < 1.

Observation:
lp(m*,s) —dp(m sl <e = |lw'o@',s)—w'e(m,s)| <e

Even if we cannot find the true w*, we will get expert-level
performance if we match the features.
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Apprenticeship learning

In most cases, only a subset of the state space can be initial states.

This means we need to match ¢ (", s) only at s ~ P(sy):

B(m) = Esy | ) ¥ (st ()

Lt=0
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Apprenticeship learning

We iteratively improve the learned w and policy.

Compute the optimal features ¢(7™)
Initialize a policy m
Loopi =0,1,..:
Find w; that best separates 7™ from m;
Assuming w; is true weights, learn m;,; optimizing the reward
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Apprenticeship learning

Compute ¢ (™) using expert data
Initialize a policy &
fori = 0,1, ... do:

Wi, ti = darg I’l"}/atX r

subjectto w'¢(m*) = WTqb(nj) +t,Vj€e{0,1,..,i}
wllz = 1
if t; < € then: return the best feature-matching policy from {ry, 74, ..., 7;}

else: ;. « argmaxw, ¢(m) —
T

—> We are solving an RL problem in each iteration!
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Apprenticeship learning

Compute ¢ (™) using expert data
Initialize a policy &

fori = 0,1, ... do: What if the expert is suboptimal?
(Wl', ti = darg I’l"}/atX r )
subjectto w'¢(m*) = WTgb(nj) +t,Vj€e{0,1,..,i}
. Iwll, < 1 )

if t; < € then: return the best feature-matching policy from {my, 4, ..., 7;}
else: m;,, < argmaxw, ¢(m)
T
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Today...

* Inverse reinforcement learning (IRL)

* Maximum margin planning
* Max-Ent IRL
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Maximum margin planning (MMP)

MMP has a similar formulation, but helps with suboptimal experts.

First let’s go over maximal margin classifiers.
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Maximal margin classifiers

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 32



Maximal margin classifiers

WLOG, assume the separating hyperplane
has distance M to the closest points. "]

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 33



Maximal margin classifiers

WLOG, assume the separating hyperplane
has distance M to the closest points. "]

maximize M -
Is it possible that the

cject T = ) S

c+ B+ Byl = M
for all positive samples i

C + ﬁlx(]) + ﬁzx(]) - < —M ; ’
for all negative samples j e T

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 34



Maximal margin classifiers

WLOG, assume the separating hyperplane
has distance M to the closest points.

maximize M -
B.c

subject to ||B]|, = 1

c+ Brx'V + BV = M
for all positive samples i

Xo
1

C + ﬁlx(]) + ﬁzx(]) - < —M ; ’
for all negative samples j e

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 35



Maximal margin classifiers

WLOG, assume the separating hyperplane ( )

has distance M to the closest points. Letw = [B1, 2, ... 1/2M

B,c
\ 2M  2M
subject to ||B]|, = 1

c+ Brx'V + BV = M
for all positive samples i

.. 1
maximize M Note ”W”2 — A1l _ .

C + ﬁlx(]) + ﬁzx(]) - < —M
for all negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 36



Maximal margin classifiers

- N
Letw = [B1, B, ... ]1/2M
» " u 1
minimize lw]l, KNote wllz = ”fl\l/llz T 2M

subject to ||B]|, = 1

c+ Brx'V + BV = M
for all positive samples i

C + ﬁlx(]) + ﬁzx(]) - < —M
for all negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 37



Maximal margin classifiers

- N
Letw = [B1, B, ... ]1/2M
» " u 1
minimize lw]l, KNote wllz = ”fl\l/llz T 2M

subject to |[|w]|, = 1/2M
c+ Brx'V + BV = M
for all positive samples i

C + ﬁlx(]) + ﬁzx(]) - < —M
for all negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 38



Maximal margin classifiers

- N
Letw = [By, B2, ... 1/2M
. . u 1
minimize [lwll,  Note Iwllz = IIZ\ILZ " oM

subject to ||w||, = 1/2M
c/2M + W1X§i) + széi) + - =>1/2
for all positive samples i

c/2M + Wlxij) + széj) + < —-1/2
for all negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 39



Maximal margin classifiers

minimize ||w||,
C

)

subject to
[ [
clwlly + wyt” + wyxl? 4+ 2172
fOI' all pOSlthQ Samples L These constraints just mean
cllwll, + Wlxij) + széf) +oe < —1/2 for all positive samples i

and negative samples j.

for all negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 40



Maximal margin classifiers

minimize ||w||,
w,C
subjectto wTx® —pwTxU) > 1

for all positive samples i and negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 41



Maximal margin classifiers

minimize ||w||,
w

subjectto wTx® —pwTxU) > 1

for all positive samples i and negative samples j

From: Stanford STATS202 CSCI 699: Robot Learning - Lecture 5 42



Back to MMP

If the expert is optimal, there exists a separating hyperplane w'¢ = ¢
such that w'¢p(r*) > cand w'¢(r) < cforallm # ™.

So we can use a maximal marginal classifier with only one positive sample!

minimize |[w||,
w

subjectto w'op(r*) —w'o(r) > 1 forall m # *
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Maximum margin planning (MMP)

Let’s allow the expert to be suboptimal by adding a slack variable.

minimize |[w||,
w

subjectto w'op(r*) —w'o(r) > 1 forall m # ©*
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Maximum margin planning (MMP)

Let’s allow the expert to be suboptimal by adding a slack variable.

minimize [|w||, + Cv
W,V

subjectto w'o(r*) —w'op(r) =>1—v forall m # ©*

CSCI 699: Robot Learning - Lecture 5 45



Maximum margin planning (MMP)

Let’s allow the expert to be suboptimal by adding a slack variable.

We could also be

minimize [|w||, + Cv
W,V

subjectto w'o(r*) —w'op(r) =>1—v forall m # ©*
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Today...

* Inverse reinforcement learning (IRL)

e Max-Ent IRL
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Max-Ent IRL

Assumption: Experts are noisily optimal, i.e., the probability that
they demonstrate trajectory ¢ is:

~ exp(wTo(9))
P(€ | W) — f@Xp(WT(p(f’)) dé,

where ¢(€) is the cumulative discounted features of trajectory ¢.
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Max-Ent IRL

Key insight: Find a probability distribution P* over trajectories
such that the feature expectation matches the expert features, i.e.,

Esp )@ ()] = p(")

But which distribution?
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Principle of maximum entropy

“When estimating the probability distribution, you should select
that distribution which leaves you the largest remaining uncertainty
consistent with your constraints. That way you have not
introduced any additional assumptions or biases.”

From: MIT 6.050]/2.110] CSCI 699: Robot Learning - Lecture 5 50



Max-Ent IRL
max — [ P(§)log P(§) d§
subjectto [ P(&)¢(&)dé = p (™)

J P(&)dE =1
P(&) =0, VEé

Ignore the inequality constraints /

for now. Later, we will show the
solution already satisfies them.
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Max-Ent IRL
max — [ P(§)log P(§) d§

subjectto [ P(&)¢p(&)dé = ¢(m*)
J P(&)dE =1

Write the Lagrangian using multipliers 4 and v:
L(P,A,v) = —[ P()log P(§) d§ + A7 ( P(O)$(©)dE — (")) + v([ P()dE — 1)

We now need to solve ralin max L(P,A,v).
, V
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Solve for P*
L(P,A,v) = = P(§)log P(§) d¢ + AT ([ P(©)$(£)d — p(n")) + v(J P(E)dE — 1)
L(P,A,v) = [ (=P(&)1ogP(&) + ATP(&)Pp(&) + vP(§))dé — ATp(n™) — v
|\ J

A\
Y Y

F(f’ P(f), P(f) ) doesn’t depend on P

Euler-Lagrange Equation
P is a local opt1mum of [ F (E P(§),P(&) )df if and only if:

This is zero!
o (6P@©,h©) = df - (£,P(®), P(é))]/
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Solve for P~
0 :
o (6P@,P©) = 0

0
3P (=P(&)1og P(§) + ATP(H)P(E) +vP(§)) =0

logP*(§) = =14+ A"¢p(&) +v
P*(&) = AT () +v-1
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-
P*(g) — e}lT¢(€)+V—1

Back to Lagrangian

L(P*,4,v) = [ (—P*(&)10g P*(&) + ATP*(&)p(&) + vP*(§))dé — AT (™) — v
_ Jr (_e/qub(E)+v—1(/1T¢(€) +v—1)+ ATeAT¢(§)+v—1¢(€)

+ veﬂ‘p(f)“’_l) dé —ATp(n*) — v
— fe/lT¢(€)+v—1d€ . )ngb(ﬂ*) —y

CSCI 699: Robot Learning - Lecture 5 55



-
P*(g) — e}lT¢(€)+V—1

Solve for v*

Having solved for P*, we now need to solve ralin L(P*,A,v).
Ry

L(P*,A,v) = [ e #©+v-1gs _ AT (%) — v

oL

(P Av) =0 =>e"fer ?Ods —1=0

eV = [ e ¢O-14¢

v* = —log [ e ¢©-14¢
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S
P*(g) — e}lT¢(€)+V—1

BaCk tO P>l< V¥ = _1ng e)qub(f)—1d€

P*(f) — eﬂT¢(f)+V*—1

P*(£) = eAT¢(§)-log [ e ¢O~Tag —1

e AT ()
P*(§) =
(£ elogfeATd’(f)‘ldS +1
2T b (&) Remember this?
" e It turns out w* = A"
P*(§) = —

[ erTo@qgg
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-
P*(g) — e}lT(]b(f)+V—1

Back to Lagrangian J* = —log [ eAT©O-1gz

L(P* 1, v*) = [ eX' ¢©O+v'-1ge _ 3T (z*) — v*

T (511 o ry
L(P* A,v*) = [ eATe@-log[et $ED T ag" —15e 3T ) 1 jog [ A 9EO-14¢
o ATH(E)

* T _
Ters@ngy 2 ~ A e +logJef D(O-14¢

L(P*A,v*) = [

L(P*, A, v*) =1—ATo(n*) + log [ e ¢ -14¢
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Solve for A" = w*

We want to minimize L(P*, A, v").

dL d -
—(p* Ny = —(1=2T * | A p(E)-1
d/l( A vY) d/l( Aop(m*) + ogfe df)

4,
~dx 8
d  ATeo)-1
) [e dé
- [erTe@®-14¢

[ero©O-1q8 — p(m*)

— (")
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Solve for A" = w*

d r ATeE)-1
dL . . ale d¢ *
E(P ;AJV ) _ f@ATd)(g)_ldf _¢(T[ )

f%eﬂfb(f)dgt *
— f AT¢(€)d€ _¢(7T)

[Pl o@as
‘lf_e/’)l‘Tqb(f)dﬂ — )

This is just P(¢ | w)
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Solve for A" = w*

dL
(P, w,v) = [ pOPE | w)dE — p(m)
= Eg_p(en [$(9] — $(")

This gives an algorithm:
1. Initialize w
2. Perform RL to learn a policy that optimizes the reward with w
3. Roll out the learned policy to compute:
w e w = (Egp(en[6©)] - p("))

4. Repeat from step 2
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Today...

* Imitation learning

* Inverse reinforcement learning (IRL)
« Apprenticeship learning
* Maximum margin planning
* Max-Ent IRL
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Next time...

* Learning from human feedback
* Suboptimal demonstrations
 Pairwise comparisons
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